We’ve got some camp offerings up (and adjusted to accommodate K-6+)! They are all half-day, outside, free-form, and run from 8:30 – 12:30. We believe in providing a pretty loose format that allows time for free play. We often find the most fun happens after the kids start saying, “I’m bored.”

Two-week camp to finish off June: https://lasteamlab.com/shop/june-summer-camp/

And as of now, two, focused, single week offerings in July: https://lasteamlab.com/shop/summer-camp-2021/

We’re hoping to create a fun and safe outdoor experience. Camps will be run by our adult teachers, but supported by our teen employees. We’re aiming for a ratio of 5 kids per adult and 3 per teen. Our teens missed out on employment last year and we want to fix that for as many of them as possible this year.

Classes

We’ve got an online Minecraft Modding class in the works for kids who are looking to take their programming skills to the next level. We’ll be programming in Java and the learning curve will be a bit steep, but kiddos should come out with some solid skills.

Other classes may be in the works as we field requests from families and have a better handle on what the other local offerings are. If you’ve got something in mind, we’ll see if we can work with you.

Celebrating Black History Month with the Los Alamos STEAM Lab 

by JoAnna O’Neill

As Black History Month comes to an end, the Los Alamos STEAM lab would like to take the time to recognize just a few of the countless Black scientists, innovators, and inventors whose contributions in STEM have profoundly changed our world for the better. Systemic racism, both historically and currently, has resulted in a severe underrepresentation of Black scholars in nearly every field of STEM and their vast achievements and contributions often go forgotten or unrecognized. By highlighting and celebrating the accomplishments of these incredible individuals, we hope to promote increased diversity, intersectionality, and inclusion in STEM. 

Making STEM equitable for everyone requires that the community as a whole actively put in the work to combat racism, bias, and underlying systems of oppression. A great resource for more information about anti-racism in STEM can be found in this great paper as well as this website by the same authors.

Prolific Black Scientists, Inventors, and Innovators:

Mark Dean – Inventor, computer engineer and co-creator of the IBM personal computer. Developed the ISA bus, colored PC, and the first gigahertz chip.

Marie Van Brittan Brown – Nurse and Inventor of the closed-circuit television security system that paved the way for modern home security systems.

Garrett Morgan – Businessman, community leader, and inventor of the traffic light and gas mask.

Gerald Lawson – Electronics engineer that designed the first video game console and pioneered commercial video game cartridges. Known as the “Father of Modern Gaming”.

Frederick McKinley Jones – Inventor of the air conditioning unit, self-starting gas engine, movie projector, and first automatic refrigeration system for trucks. Co-founder of Thermo King; the global leader in transport temperature control systems. 

Marian Croak – Vice President of Engineering at Google known for initiating and developing Voice Over Internet Protocol (VOIP) that allows audio and video communication through the internet. 

Alexander Miles – Inventor that designed and patented automatic elevator doors, drastically increasing elevator safety. 

Lewis Latimer – Inventor and designer of the carbon filament for the incandescent lightbulb. Contributed to the invention of the first telephone.

Shirley Ann Jackson – Physicist, first Black woman to earn a doctorate at MIT, and eighteenth president of Rensselaer Polytechnic Institute. Inventor of the portable fax, touch tone telephone, solar cells, caller ID, call waiting, and fiber optic cables.

Otis Boykin – Engineer credited with improving the technology of electrical resistors and electronic control devices used in missile guidance, televisions, computers, radios, and pacemakers.

Lonnie Johnson – Aerospace engineer and inventor of the Johnson thermoelectric energy converter and iconic super soaker.

Charles Drew – Medical researcher and surgeon that improved techniques for blood storage. Developed the blood bank, plasma programs, and the concept of  blood mobiles. 

Jane Cooke Wright – Professor, surgeon and pioneering cancer researcher that analyzed a wide range of cancer treatments and explored the relationships between patient and tissue culture response. Developed new techniques for administering chemotherapy and was the first Black woman to be named associate dean of a nationally recognized medical institution. 

Lisa Gelobter – Computer scientist and technologist credited with developing the animation software program used in GIFs. Worked on several pioneering internet technologies and advancements in animation and online video. 

Alice Ball – Chemist that developed the “Ball Method” (the most effective treatment for leprosy until the 1940s) and conducted groundbreaking work in the cure of Hansen disease. 

Jesse Ernest Wilkins Jr. – Mechanical engineer, nuclear engineer, mathematician, and scientist that developed the mathematical models to explain gamma radiation that he later used to develop advances in gamma radiation shielding.

Elijah McCoy – Engineer and inventor of the lawn sprinkler, portable ironing board, and lubricants that revolutionized the steam and railroad industries.

Mary and Mildred Davidson – Sisters that invented the sanitary belt, toilet paper holder, walker tray, and multiple accessibility tools. 

Gladys West – Mathematician whose calculations,  computer programming and extensive contributions to satellite geodesy helped construct a model of the earth’s shape that was incorporated into the Global Positioning System (GPS), resulting in its widespread use. 

George Edward Alcorn Jr. – Physicist, engineer, and distinguished professor known for his work in Rockwell missiles, technology transfer, and his multiple aerospace and semiconductor inventions including the imaging x-ray spectrometer. 

George Carruthers – Astrophysicist and inventor of the ultraviolet camera and spectrograph used by NASA in the Apollo 16 flight as well as an image converter for detecting electromagnetic radiation. 

Ernest Everett Just – Biologist and scientific writer that conducted pioneering work in the physiology of development and fertilization. First to recognize the fundamental role of cell surface in development of organisms.

Patricia Bath – First African-American to complete a residency in ophthalmology and first Black woman to receive a medical patent for her invention of the Laserphaco Probe used to treat cataracts.  

Bessie Blount Griffin – Writer, nurse, physical therapist, forensic scientist, and inventor of the electronic feeding device along with other assistive devices.

Daniel Hale Williams – Cardiologist that performed the first documented, successful heart surgery and founded the first interracially staffed hospital and first Black nursing school in the United States. 

Katherine Johnson – NASA research mathematician and trailblazer whose calculations of orbital mechanics and flight path were critical to the success of the first and subsequent U.S. crewed spaceflights. 

Betty Harris – Chemist known for her work in environmental remediation, hazardous waste treatment, and explosives research at the Los Alamos National Laboratory. Synthesized and characterized high explosive and energetic materials and developed the detection methods and the extremely sensitive spot test for the explosive TATB. 

Kenneth J. Dunkley – Physicist and visual pioneer in the field of holography. Best known for inventing and patenting 3D glasses.

Valerie Thomas – Scientist, data analyst, and inventor of the illusion transmitter that has since been adopted by NASA and adapted for use in surgery and the production of television and video screens. Developed digital media formats and image processing systems used in the Landsat program to send images from space.

John Henry Thompson – Former Chief Scientist at Macromedia, computer programmer, and inventor of the Lingo programming language used in Adobe Director and Shockwave to render visuals in computer programs, video games, and animation.

Marie Maynard Daly – Biochemist and first Black woman to earn a PhD in Chemistry in American. Conducted important studies on cholesterol, sugars, and proteins and developed programs to increase enrollment of minority students in graduate and medical programs. 

James West – Acoustician, engineer, and inventor of the electret microphone. Holds over 250 foreign and U.S. patents for polymer foil electrets and microphone production and design.

Dorothy Vaughan – Mathematician, computer programmer, and NASA’s first Black manager. Known as the “Human Computer”.

Percy Lavon Julian – Research chemist and pioneer known as “The Chemist Who Changed the World.” Ingeniously developed chemical synthesis of important medicinal compounds from plant based sources, making them more affordable to mass produce. Received more than 130 chemical patents and was the first Black chemist inducted into the National Academy of Sciences.

George Washington Carver – Botanist, inventor, scientist, and agricultural chemist whose innovative discoveries and inventions helped restore the struggling agricultural economy of the South during the early 20th century. Known as the father of regenerative agriculture.

We’ll use our breadboard, some LEDs, and wire to light out rocket.

Materials:

  • 1 wooden rocket
  • 1 coin cell battery
  • 1 AA battery holder
  • 4 AA batteries
  • bread board
  • Alligator – male jumpers
  • copper tape
  • 2ft each red, blue, and black 22 gauge wire
  • Wire strippers
  • 4 5mm red LEDs
  • 4 3mm blue LEDs
  • 1 470ohm resistor
  • 1 male-male jumper

Hour of Code can be a little overwhelming. Here are some of the projects I find most valuable. Most resources were pulled from https://hourofcode.com/us/learn

Pre-Readers

Pre-reader activities just don’t involve written language. Most of these are still completely fun for older kids and even adults.

CodeSpark Academy: I don’t love their pay structure it seems dishonest, and honestly my kid was done after a month, but the puzzles are great for problem solving and can be replayed to collect stars. Some amount of gameplay is free with hour of code.

Website: https://codespark.com/play/
Click “Schools” in the upper left and then “Students” then “Hour of Code.” I recommend the puzzles, but you can design games as well.

Lightbot: I love lightbot enough that I bought the full featured app awhile ago. It is challenging enough for adults and simple enough for preK kids to at least start out. The puzzles involve getting a robot to light squares, but he can jump, turn, light, and more. It works on sequencing and adds functions. The number of commands becomes restricted over time forcing the use of functions. This can limit it for younger kids, but it adds a nice challenge for older kids.

Website: https://lightbot.com/hour-of-code.html

PBS ScratchJr: PBS has some really great guided lessons for ScratchJr. This requires some more hands on work from a parent, but the lessons walk through an unplugged activity, teach some basics of how to use Scratch Jr, watch a 15 minute PBS video clip, and then have kids re-enact a scene in Scratch Jr. These are a great jumping off point for having them create more of their own stories.

Scratch Jr is a block based app that allows kids to create movies or visual stories. It is not nearly so extensive as Scratch, but the simplicity makes it a great jumping off point.

Website: https://pbskids.org/learn/scratchjr/

Block-Based Programming for Readers

Dance Party: This is the quintessential Hour of Code activity and kids tend to love it. There are a lot of videos to watch. They can be skipped, but they are also all about underrepresented people coding in unique ways, so they’re pretty worthwhile.

Website: https://code.org/dance

AI for Oceans: This activity teaches about machine learning and uses the ecological impact of trash in the oceans as a teaching tool. Kids train the bot to recognize fish and not fish and see how well it works. It is a bit slow-paced and I almost didn’t include it, but so few coding activities talk about machine learning that I thought it was important.

Website: https://code.org/oceans

Minecraft: Three of these are Minecraft based puzzle games that teach kids how to sequence. They’re very popular and well done, but they do assume some basic minecraft knowledge. The fourth is more complex and allows kids to have events trigger behavior. I really like this set.

Website: https://code.org/minecraft

You can also download minecraft education edition and run through some free activities there. I like education edition in concept and have even run some classes with it, but it is a bit buggy still and that can be frustrating.

Plethora: This one is new to me and I think I really like it. It starts off a bit slow and it is a bit clumsy to me, but I think that is because of my preconceived notions. Each level starts with a set of colored shapes and should end with a different set. Kids set collision events to create or delete shapes for the final outcome. This concept comes up in game design a lot, and I’ve never seen it taught so explicitly. I like it a lot. Kids can also design their own challenges and the platform is forever free. There is reading at the start, but I think this would be suitable for pre-readers if a reader got them started.

Website: https://www.iamplethora.com/levels.html

Art with Kano: Kano has a great drawing toolkit that lets folks programmatically create drawing by setting the background and pen colors and creating shapes and lines. The tutorials are well done and easy to follow. They progress to creating pong-like games.

Website: https://world.kano.me/challenges/kano-code/strings

Coding Without Blocks

You’ll never catch me saying that block coding isn’t real, but sometimes it is limiting based on the platform you are doing it in. Learning a fully developed language requires typing, spelling, and problem solving skills, but can lead to more freedom.

Bitsbox: Bitsbox is a subscription box I’ve heard some positive things about. In this free hour of code you create a few apps. They walk you through the exact things to type, but also encourage a lot of play with your finished project. I like this, because playing around with functional code is a great way to learn programming, and quite frankly an accepted way to be a professional programmer as well.

Website: https://bitsbox.com/hoc2016.html

Code Combat: This is gamified coding and it works pretty well. STEAM Lab had a free subscription at the beginning of covid and several kids really enjoyed it. There was a major shift of gameplay between worlds, so if your kid loves the free levels, they still may not love the paid version.

Website: https://codecombat.com/play/dungeon?hour_of_code=true and https://codecombat.com/play/game-dev-hoc?hour_of_code=true

Our own Python Tutorials: Not as flashy as some of the Hour of Code apps, but our python tutorials walk kids through the steps needed to make an interactive program in their web browser.

Python: Math Facts

Python: MadLibs

Whatever you do and whatever your style you should have fun with Hour of Code. Programming opens a door to a different way of thinking about the world and is a great tool for both art and science.

Elatsoe (Amazon / Los Alamos Public Library) is YA/Middle Grade Speculative Fiction set in an alternative United States that is a home to magic. Magic is commonplace enough not to be astounding, but also not really a huge part of life for most folk, hence it is not fully in the fantasy realm.

Elatsoe (Ellie)’s Lipan Apache family has passed down the knowledge that allows them to raise ghosts, but only animals. Raising people is bad news; they come back as angry balls of energy, unlike her faithful dog who will protect and love her all of its days. The secret is well hidden and is passed from mother to oldest daughter and must be used carefully to serve and protect their community.

The story centers around a dream in which Ellie’s cousin visits her with his last breath asking her to avenge his murder and protect his family. She must use all her knowledge, cunning and contacts to uncover the truth and avenge him without unleashing his ghost to do untold damage.

This story pits the little guy against the rich and powerful without ever implying that Ellie doesn’t have plenty of her own power. It doesn’t gloss over the historic and current atrocities enacted against indigenous people, but always there is hope and a desire to restore the earth. Ellie is followed in every store she enters while her friend Jay is adored.

This story is wonderfully diverse in the best ways. Ellie’s culture plays a large part in the story as it does in her life. Her mom uses story-telling to impart truths and we learn the life of Six Great at the story unfolds. Lipan burial rites and beliefs serve as a central theme to the story and elders are consulted.

There is also incidental diversity included causally and without fanfare. Ellie is asexual and doesn’t plan to have children. She considers breaking tradition and passing her legacy to her cousin’s son. Her best friend is a cheerleader and his sister is the star of her basketball team. Vampires are evil, but they’re also just normal people. Marriage is not just between a man and a woman. Inter-racial families must find ways to incorporate multiple cultures into their lives. Men can take a back seat to their wives careers and passions.

This book is appropriate for most anyone. It has some complex concepts, but a story that can be followed by any kiddo up for longer books. I adored it without reservation, but I could have read it out loud to my girls when they were 4 and 6, my son, currently 5, doesn’t have the attention for it though.

Crystal structures are all around us. We eat them in the form of salt and sugar and in freezing weather we see them in the forms of snow, ice, and sleet. Water is one of the simplest molecules to form crystals, making it an interesting and fun topic of study. However, don’t let the simplicity of water molecules fool you into thinking the process of snow formation is simple! Water crystals can be exceptionally complex and are the focus of extensive scientific inquiry

First, we need to consider the basis of snow; water. Water is made of two hydrogen atoms attached to a single oxygen through covalent bonds (in which atoms share electrons to create linkages and form molecules). It looks like this:

When water is in its gas or liquid state, the molecules bounce around freely, but when colder temperature causes it to solidify, the slightly positive charge of the hydrogen atoms is attracted to the slightly negative charge of the oxygen.This causes the water molecules to form interactions between each other (known as hydrogen bonds) which leads to the development of crystals that generally come together in very specific ways, the most basic of which is shown below.

The crystal on the right is a variation in which a few of the hydrogen atoms are pointing up at a 120° angle. They could as easily be pointing in different directions which allows for a diverse variety of snowflakes to be formed

When liquid water freezes, it forms neat crystals and we get ice. But when water vapor deposes, turning directly from a gas to a solid, the molecules don’t have time to form large, clean crystals and instead form snowflakes through a complex additive process. A basic start of a snowflake could look roughly like this:

The speed at which snowflakes form combined with other factors including temperature, pressure, and humidity determines the shape, size, structure, and organization of a snowflake. For example, colder temperatures generally form snowflakes that are less elaborate or organized due to the rapid speed of formation.

Drawing out all of the individual molecules in a snowflake is a long process and can obscure the larger picture. Thus, they are often simplified as hexagons or star shapes like these. All six arms of the snowflake grow independently, but under near identical conditions as they fall from the sky to the earth’s surface. This permits the formation of complex, symmetrical, and ultimately unique shapes.

Caltech has an excellent guide on classifying snowflakes and wikipedia has an entire article on snow science that talks about temperatures and classifications. Use those and this simple hexagon guide to draw your own snowflakes.

All About Blood

With Halloween having just passed, you may have noticed fake blood covering various costumes and decorations. But what exactly is this incredible red substance that courses through our bodies? 

Blood is a specialized fluid found in bodies of humans and other animals. It accounts for approximately 10% of an adult human’s weight, with the average person having roughly 10 pints of blood in their body. 

Blood has a variety of different functions, including: 

  • Oxygen and nutrient delivery to tissues of the body
  • Waste product transportation, such as moving CO2, urea, and lactic acid to organs that can process and/or eliminate them from the body
  • Prevention of infection through immunological functions
  • Clot formation (coagulation) to prevent excessive blood loss in the case of injury
  • Body heat regulation
  • Hormone transportation for chemical signalling and messaging functions 
  • pH regulation
  • Cellular water concentration maintenance
  • Osmotic pressure regulation in blood cells

What is blood made of? 

Blood is composed of four major components: plasma, red blood cells, white blood cells, and platelets. 

Plasma: 

Plasma is the yellowish liquid portion of blood that is a mixture or water, proteins, sugars, hormones, and salt. Plasma is mostly water by volume (about 92%) and serves to transport blood cells, nutrients, antibodies, waste products, clotting proteins, and chemical messengers or hormones throughout the body while helping maintain the delicate fluid balance required for life.

Red Blood Cells: 

Red blood cells (RBCs) are also known as erythrocytes. RBCs are shaped like indented disks and have no nucleus, allowing them to be more flexible for passage through blood vessels. The lack of a nucleus also limits the lifespan of these cells, meaning that RBCs only live about 120 days on average. RBCs make up about 40-45% of total blood volume and are made daily inside our bone marrow at a rate of about 4-5 billion cells per hour. Red blood cells also contain a special protein called hemoglobin that carries oxygen and gives blood its characteristic red color. 

White Blood Cells: 

Also known as leukocytes or WBCs, white blood cells account for about 1% of total blood volume, but are a very important component of the immune system. WBCs help fight bacteria and viruses to defend the body against infection. Like red blood cells, WBCs are generated constantly in bone marrow as well as in the  spleen, thymus, and lymph nodes. WBCs flow through the bloodstream attacking foreign bodies they encounter. When fighting an infection, white blood cell production increases to generate more cells to help protect the body. The lifespan of WBCs ranges from hours to years and some types of WBCs generate antibodies (special proteins that help the body recognize foreign materials in order to get rid of them). Several of the many types of white blood cells are:

Monocytes

The largest WBC, monocytes are effective at engulfing pathogens or worn out cells in a process called phagocytosis. They are known as macrophages once they leave blood circulation and enter tissues. Monocytes influence the process of adaptive immunity, provide immune surveillance, and live for an average of 3 days.  Neutrophils: The most common type of white blood cell, accounting for 55-75% of total WBC count. Neutrophil acts as an immediate response cell and is used for immune defense through its killing and phagocytizing bacteria and mediating inflammation. The lifespan of a neutrophil ranges from minutes to days. 

Lymphocytes

T-Lymphocytes: Help regulate the function of other immune cells and directly attack infected cells and tumors in a process called cellular immunity. 

B-Lymphocytes: Are responsible for antibody production (which is important in humoral immunity) and function as memory cells that live for years. They can also recognize surface antigens of bacteria and viruses. 

Basophils

These small cells sound the alarm when infectious agents invade blood. Basophils secrete chemicals that help control the body’s immune response and promote inflammation. They have a lifespan ranging from hours to days and can enter tissues in places of injury where they secrete the anti-clotting factor heparin. Basophils are the least common WBC, accounting for only 0.5-1% of circulating white blood cells in the body. 

Eosinophils

Eosinophils have a lifespan ranging from minutes to days and work to promote inflammation. Eosinophils perform antiparasitic and bacteria killing activities. 

Platelets:

Also known as thrombocytes, platelets are tiny, colorless cell fragments found in our blood. Platelets work to control and prevent bleeding by gathering at the site of an injury where they will stick to the lining of an injured blood vessel to form a platform for blood coagulation (clotting). This coagulation leads to the formation of a fibrin clot that covers the wound and stops the flow of blood out of the injury. Fibrin also helps promote healing by forming the initial scaffolding for new tissue to form. Platelets are made in our bone marrow and have a lifespan of about 10 days before they are removed from the bloodstream. 

Blood Vessels

The heart pumps blood throughout the body through a series of blood vessels. The three main types of blood vessels are arteries, veins, and capillaries. 

  • Arteries carry nutrients and oxygenated blood from away from the heart and to the rest of the body. 
  • Veins carry deoxygenated and nutrient poor blood from various parts of the body back to the heart. 
  • Capillaries are small, thin vessels that connect arteries to veins. They have thin walls to permit oxygen, nutrients, carbon dioxide, and waste products to pass to and from the surrounding tissue cells. 

Blood Types

There are 8 different blood types determined by the presence or absence of substances that can trigger an immune response. These substances are known as antigens. In the case of blood transfusions, it is important to match compatible blood types, because some antigens can cause a patient’s immune system to attack transfused blood. The blood types are described using the letters A, B, and O to signify which antigens are present on red blood cells.The positive and negative signs indicate if the Rh protein is present in the blood or not. 

  • A- only has A Marker
  • A+ has A marker and Rh factor 
  • B- has B marker only
  • B+ has B marker and RH factor but no A marker
  • O- doesn’t have A or B markers or Rh factor
  • O+ doesn’t have A or B markers, but does have Rh factor
  • AB- has A and B markers but not Rh factor
  • AB+ has both A and B markers and Rh factor

How to Extract DNA From a Pumpkin!

Before you throw away your leftover halloween pumpkins, consider doing this at home science experiment! 

DNA (deoxyribonucleic acid) is the material within living cells that carries information about how an organism will look and function. We have a lot of DNA within our bodies, but so do all other living organisms, including pumpkins! Long strands of DNA are wound up and stored in the form of chromosomes. Most humans have 23 pairs of chromosomes for a total of 46, while pumpkins have 20 pairs, for a total of 40 chromosomes. Humans and pumpkins share about 75% common DNA! 

This experiment is relatively safe with the most dangerous components being standard dishwashing soap and rubbing alcohol. However, parental supervision is still suggested along with gloves to prevent irritation to the skin (in the case of spills) and safety glasses or goggles to avoid splashes to the eyes. 

Check out the video on YouTube: https://youtu.be/sS5oSQBCSkc

Supplies:

  • Clear glass or plastic cups 
  • Measuring cups
  • Dish soap
  • Table salt
  • Water
  • Blender or food processor
  • Rubbing alcohol (99% isopropyl alcohol preferred, chilled in the freezer)
  • Coffee filters, cheesecloth, or other straining device
  • Raw pumpkin pieces or canned pumpkin
  • Toothpicks or thin straws

Step 1: Pulverizing The Pumpkin 

To get the DNA out, the pumpkin will need to be ground up or mashed into a paste. This can be done using a blender or food processor. It helps to cut or chop the pumpkin into smaller pieces and add a small amount of water to assist the blending process. You will want to blend your pumpkin pieces until most of the chunks are pureed, but it doesn’t need to be perfect, as we will filter out any remaining solid pieces at a later time.

Step 2: Cell Lysis 

To get access to the DNA within the cells, we can use the detergent in dish soap to break open the cell membrane and nucleus. This process of breaking a cell open is called lysis. 

To prepare a lysis solution, combine ½ a cup of water with 2 teaspoons of dish soap and 1 teaspoon of table salt in a glass or cup and stir until the salt is dissolved. 

Next, in another cup, add 2-3 tablespoons of the lysis solution and 1 tablespoon of your pulverized pumpkin paste and stir. If your mixture is still pasty, add more lysis solution until you achieve a soupy consistency. 

Step 3: Filtering

At this point, your DNA should be released into the soapy pumpkin mixture. We will now need to filter out the solids by using a cheesecloth, coffee filter or other strainer. Pour your soupy pumpkin mixture from the previous step over your filter and into a clean cup. If any of the solids sneak their way in, repeat the process with a new filter and fresh cup. 

Step 4: Precipitating the DNA!

After you finish filtering, you should be left with an orangey opaque liquid with no chunks. The DNA is dissolved in this liquid and we will now use the alcohol (along with the salt we added earlier) to make the DNA precipitate and become visible to the naked eye. 99% isopropyl alcohol that has been chilled in the freezer works best for this, but you may still be able to get results with lower concentration alcohol. 

Add an equal amount of your rubbing alcohol to your orange liquid slowly with the cup tilted so layers form with the alcohol sitting on top of the liquid pumpkin extract. Over the course of a few minutes, you should see a stringy white substance form between the two distinct layers; this is your pumpkin DNA! If you don’t see anything form after a few minutes, you can try again by repeating the above steps and making sure to use the correct amounts of soap and salt. 

Step 5: Removing the DNA

At this point, you can swirl the DNA around with a toothpick or thin straw to remove it from the glass. If you want to save and display your newly extracted pumpkin DNA, you can put it in another container of rubbing alcohol. This process can be used to extract DNA from other fruits and vegetables for future experiments! 

I’ve held off on writing this review, because one aspect of this book didn’t set well with me, but I think it has far more good than not, and it was easy enough to discuss its one problem with my kids. So I decided to give it a go after waking up to another Black man shot by police. Also, it is written by a POC which puts me a little more at ease, but still not entirely.

Ghost Boys by Jewell Parker Rhodes (Los Alamos Public Library) starts at the scene of the extrajudicial police shooting of a young Black boy, Jerome. The circumstances leading up to the shooting are revealed in snippets over the course of the book both in flashbacks and trial coverage. It will sound familiar, though. A good kid who tries to always do the right thing living in a rough neighborhood under circumstances that make the shooting ‘justifiable’ and even ‘laudable’ to those who will always set Black boys on the wrong side of the law.

The book is told through the eyes of Jerome who is now a ghost watching his family mourn and his killer cover backside. His grandmother can sense him and he has the ghost of another boy to give him guidance, but his only real companion turns out to be Sarah, the daughter of his killer. She is a little girl his own age (and size) living a very different life, but struggling just the same.

The heart of the tale is about Jerome and Sarah and their shifting perspectives of each other. Already in turmoil, dealing with people who either call her father a hero or a murderer, Sarah will be forever changed by putting a face to the boy whose life her father ended. The book is masterfully written and ends on a hopeful, but far from easy, note.

My one issue, and it is big, is the use of white female tears. On a few occasions Sarah is overwhelmed with the growth that is being asked of her and escapes through tears. Her life is pretty awful in the moment, so that’s a bit reasonable. My real problem is that when Jerome gets angry with her, he is counseled by his ghost friend to be gentle with her in a way that didn’t sit well with me. It speaks too much to the feelings of white women being centered over the feelings of those who are literally being killed and I wish it would’ve been handled with a little more nuance. In my family, it served as a jumping off point for talking about this issue, but only because I’d read the book.

This book is written for middle grades. My sixth grader enjoyed the book and was able to have good dialogue about it. My fourth grader, who can be very sensitive to things, read through the book in just a few days. She was entranced. It is well done, in the sense that it doesn’t brush over the trauma and horror, but it does handle it in an age-appropriate way. I highly recommend it, with the noted reservations.

We’ve got a few things lined up for the fall and will be adding more as schedules stabilize.

Covid Camp

Our Covid Camp is currently full, but we’re keeping a wait list if you contact us. This camp is about being active, staying social, and getting work done. It is all outside, masked up, and physically distanced. We think it’ll be fun, but also safe.

We’d love to hiring a teen to help us with this camp (so we can clear our waitlist). If you know someone, send them our way. The plan is to always have everyone within sight of our adult, but we need to maintain the 1:5 ratios set by the governor.

Algebra I with a Social Justice Slant

I’ve been thinking about how to develop a social justice focused math curriculum since I first heard of them over a decade ago. The right student with the right need finally motivated me to do it now.

This Algebra I class is pre-algebra and algebra rolled into one. It is problem-based in nature and it revisits the same concepts multiple times with added complexity. We’ll meet outside for as long as we can and switch over to Google meets if we need to.

Dungeons and Dragons

We’re always looking for ways to get kiddos together socially during weird times, so when we had the opportunity to hire on a high schooler to run some D&D campaigns we jumped on it.

The first round of Dungeons and Dragon Clubs will last 5 weeks, and we have sessions for kids ranging from 2nd to high school. Beginners are welcome and they’ll have a one-on-one session to learn how to set up their characters.

Minecraft

We’re scaling back our minecraft operations for the beginning of the school year. Our creative bedrock and creative java offerings will simply be for server access and not scheduled chat, kids can arrange their own chat with buddies or use in-game chat. We’ve got Raspberry Juice installed on the Java server, so this works with all of our Python content as well.

For our Little People it is still all about the time to chat with friends, so we’re keeping that class, but reducing it to one meeting a week. Our Java Survival kids really enjoy the chat portion as well, so we’ll be keeping that meetup going as well.